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Abstract. We study thermodynamic properties, surface magnetization, specific heat and
susceptibility ofXY quantum chains with coupling constants following arbitrary substitution
sequences. Generalizing an exact renormalization group (RG) transformation, originally
formulated for Ising quantum chains, we obtain exact relevance criteria of Harris–Luck-type for
this class of models. For two-letter substitution rules, a detailed classification is given of sequences
leading to irrelevant, marginal or relevant aperiodic modulations. We find that the relevance of
the same aperiodic sequence of couplings in general will be different forXY and Ising quantum
chains. By our method, continuously varying critical exponents may be calculated exactly for
arbitrary (two-letter) substitution rules with marginal aperiodicity. A number of examples are
given, including the period-doubling, three-folding and precious mean chains. We also discuss
extensions of the renormalization approach to a special class of long-range correlated random
chains, generated by random substitutions.

1. Introduction

Phase transitions and critical phenomena in Ising spin systems with (dis-)order of various nature
(random, quasiperiodic, self-similar etc) have been an active research area for many years. The
main questions deal with the relevance of these kinds of disorder to the thermodynamics of
different models and the characterization of new, disorder-induced universality classes. For
random systems, the Harris criterion [11] gives a heuristic scaling argument for the relevance
of disorder. Anticipated by work of Tracy [41] and Benzaet al [4], this criterion has later
been generalized by Luck [30] to general aperiodic disorder. Due to these arguments, the
basic concept to determine the relevance of aperiodic modulations, are thelocal fluctuations
of the mean coupling constantof the model. These fluctuations are measured by the so-called
wandering exponent(or fluctuation exponent)ω. For a spin model on a regular lattice, but
with varying nearest neighbour couplingsεi,j , ω is defined as [30]∑

〈i,j〉∈V
(εi,j − ε0) ∼ |V |ω |V | → ∞ (1)

whereε0 is the mean coupling of the model and the sum is over all nearest neighbour pairs
in a (roughly spherical) patchV with volume |V |. Whereas for any periodic distribution
of coupling constants, fluctuations are bounded and we haveω = 0, independent random
couplings lead toω = 1

2 due to the law of large numbers. The criterion now is perturbative
in nature and is expected to hold for weak disorder: comparing the local shift of the critical
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point due to the aperiodic modulations with the distance from criticality, disorder should be
relevantif the wandering exponentω exceeds a critical valueωc [30]

ωc = 1− 1/(Dν). (2)

Here,ν is the correlation length exponent of the unperturbed system and the model is disordered
in D coordinate directions. For theXY chain in particular, we haveD = ν = 1, and thus
ωc = 0.

Especially since the discovery of quasicrystals in 1984, the effect of (deterministic)
aperiodicity on the thermodynamical properties of different models has been the topic of
numerous, mostly numerical studies. Universal behaviour was found for most quasicrystalline
systems, such as Ising models on Penrose and Ammann-Beenker tilings [6, 31, 37, 39] and
also in three dimensions [32]. Marginal scaling, on the other hand, has been observed for
the surface roughness of two-dimensional quasicrystals [10, 12] (cf also the review [9] for
further references). Although almost all results corroborate the Harris–Luck criterion, this is
nevertheless somewhat more subtle for aperiodic or (more general) correlated disorder than
for randomly disordered systems. This is because it is not the fluctuations of the coupling
constants directly, but of the related local shift of the critical control parameterδ (the ‘local
reduced temperature’ in classical Ising models) that should be considered. Certainly, since this
quantity is rather an intuitive concept than sharply defined, its dependence on the local coupling
strengths is by no means obvious in most models. While independent random couplings
will normally also lead to independent local shifts of the control parameter, and therefore
to fluctuations with the same fluctuation exponentω = 1

2, this is no longer guaranteed if
the coupling constants are correlated or even distributed according to a deterministic rule.
The exactly solvable Ising models on the Labyrinth [3] provide an example where the strong
correlations among the coupling constants due to the ‘rapidity line parametrization’ enforces
Onsager universal behaviour even for relevant fluctuations (in the sense of [30]) of the mean
coupling constant.

Analytical results have, so far, only been obtained for a small number of systems. With the
exception of the Labyrinth models, which are, when solvable, somewhat non-generic in their
aperiodicity, these are one-dimensional free-fermion models, such as tight-binding models or
quantum chains. Most results rely, moreover, on a special choice of the aperiodic orderings
(such as the Fibonacci model) which makes them applicable to efficient trace-map methods or
renormalization techniques derived therefrom [1,4,24]. Independent of trace map properties,
the surface magnetization of aperiodicIsing quantum chainswith constant transverse field has
been calculated exactly for certain substitution sequences [20]. Only recently, a decimation
procedure in real space has been introduced [21] (again for particular substitution rules) that
later could be generalized to obtain analytically the scaling properties of the entire class of
Ising quantum chains with coupling constants following arbitrary substitution rules [13]. This
led to an analytical confirmation of Luck’s relevance criterion for these models.

In this paper, after a description of the model in section 2, we show in section 3 how
the renormalization approach, as formulated for the Ising quantum chains, can be extended to
aperiodicXY spin chains. It turns out that, for a given sequence of couplings, the influence
of the induced disorder may be different in the two models. Nevertheless, fluctuations turn
out to be the basic concept for the demarcation of relevant from irrelevant disorder. However,
the fluctuations of the sequence of coupling constants itself and of the induced sequence of
reduced coupling constants, that play the role of local critical control parameters here, behave—
in contrast to the randomly disordered case—in general differently for aperiodic order. Taking
this into account, the Harris–Luck relevance criterion may be adapted toXY spin chains
or, equivalently, to tight-binding models with aperiodic hopping. We calculate the scaling
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exponents of the surface magnetization and the central spectral gaps at criticality and derive
therefrom in section 4 (following [28]) the critical scaling behaviour of the specific heat and
the zero-field susceptibility. Connections to localization properties of tight-binding models are
briefly mentioned. In section 5, we show how known results from trace-map approaches can
be rederived, clarifying their origin in this broader context. As examples, we also give some
new scaling exponents for different aperiodic chains with marginal disorder. In section 6, an
extension of the renormalization approach to random substitution rules is proposed. Finally,
we conclude with a short discussion.

2. The model

The system we are concerned with here is defined by the following quantum Hamiltonian:

HN = −
N∑
j=1

(εxj σ
x
j σ

x
j+1 + εyj σ

y

j σ
y

j+1). (3)

The coupling constantsεx,yj > 0 are site dependent and the operatorsσ
x,y

j denote Pauli’s
matrices acting on thej th site. Boundary conditions may be chosen as periodical(σN+1 = σ1)

or free(εN = 0).
For a general set of coupling constants, this model is equivalent to a free-fermion

field [27,38], the fermionic excitation energies3q satisfying the linear difference equations

3qψ
(q)

j = εxj−1φ
(q)

j−1 + εyj φ
(q)

j+1 (4)

3qφ
(q)

j = εyj−1ψ
(q)

j−1 + εxj ψ
(q)

j+1. (5)

If we define

η
(q)

2j = φ(q)2j η
(q)

2j−1 = ψ(q)

2j−1 (6)

η̂
(q)

2j = ψ(q)

2j η̂
(q)

2j−1 = φ(q)2j−1 (7)

these equations decouple into the eigenvalue problems of two independent tight-binding models
with aperiodic hopping

H
1,2
tb =

N/2∑
j=1

(ε
x,y

2j |2j〉〈2j + 1| + εy,x2j−1|2j − 1〉〈2j |) + h.c. (8)

This decoupling can also be carried out on the level of the spin chain Hamiltonian itself and
has been used there to analyseXY chains with random bonds [5]. Difference operators of the
kind (4), (5) underly various physical models and may also be interpreted as a phononic model
with varying spring constants or the transition matrix of a one-dimensional random walk in an
aperiodic environment. The Ising quantum chain with transverse magnetic field in its fermionic
form also gives rise to a similar set of equations, the field variables replacing theεy couplings.
In [13], a renormalization scheme has been defined for the case of auniform magnetic field
(or, more generally, field variables depending on the neighbouring coupling constants), thereby
effectively decoupling the degrees of freedom that finally enter the renormalization scheme. In
our situation, however, theεy couplings will not be determined through their neighbourhood,
but, together with theεx couplings, follow the aperiodic sequence that defines the model.

For an equal distribution of the coupling constants over the even and odd bonds, as in the
homogeneous or independent random case, theXY chain exhibits a zero temperature phase
transition from anX- to aY -ferromagnetically ordered phase at

δ1 := [ln εx ]av− [ln εy ]av = 0. (9)
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Figure 1. Phase diagram of theXY chain with ferromagnetic and dimer phases, projected to the
directionsδ1 andδr .

While the phase transition is of Onsager type for uniform couplings, random disorder is a
relevant perturbation and leads to weaker critical singularities [38] and the peculiar properties
connected to the so-calledrandom singlet phase[5]. For the quasiperiodic Fibonacci sequence,
a non-universal scaling law has been found for isotropic couplings (εxi = ε

y

i ) with scaling
exponents depending on the coupling constants [28]. The model withalternatingcoupling
constantsεx,y2j = εe, εx,y2j−1 = εo, on the other hand, shows a phase transition (again of Onsager
type in the pure case) between two dimer phases [26] at

δr := [ln εx,y2j ]av− [ln εx,y2j−1]av = ln εe − ln εo = 0. (10)

In the most general case the criticality condition may be obtained from the criticality conditions
of the decoupled submodels (see (45) below). It compares the differences of the average
(logarithmic)X andY couplings with the difference of the average even and odd couplings of
the model

δ := min{|δ+|, |δ−|} = 0 δ± := δ1 ± δr . (11)

For |δ1| > |δr |, the model is in a ferromagnetic phase, whereas|δ1| < |δr | corresponds to the
dimer phases (cf figure 1).

In our models, the site-dependent coupling constantsε
x,y

j shall be drawn from a (finite)
set of valuesεai , where the label is taken from ann-letter alphabetA with lettersa1, . . . , an.
The aperiodic ordering of the coupling strengths in the chain is generated by an arbitrary
substitution rule on the alphabet of the labels

% : ai → wi (12)

where thewi arewords(finite strings of letters) fromA. As an example, consider thesilver
meansubstitution rule, which reads(a1 = a; a2 = b):

%sm :
a → wa = baa
b → wb = a a→ baa→ abaabaa→ . . . . (13)

In the following,w`i shall denote thèth letter and #aj (wi) the total number of lettersaj in
wi . We also define|w| to be the length (total number of letters) of a wordw. Since (non-
overlapping) pairs of consecutive letters will also play an important role, we finally let #αβ(w)

be the number of non-overlapping pairs(αβ) contained in a wordw of even length.
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The parameters of the aperiodic model are given by the ratios of theε
x,y
ai . We define, on

a logarithmic scale,

rij ≡ ln εxai + ln εyai − ln εxaj − ln εyaj (14)

and

1i ≡ ln εxai − ln εyai . (15)

Then-letter model thus containsn− 1 independent variables which parametrize the strength
of isotropic aperiodicityandn parameters1i which determine theaperiodic anisotropyof the
model. For notational clarity, we will restrict discussions from now on to substitution systems
on a two-letter alphabet,A = {a, b}, and comment only briefly on extensions to generaln-
letter substitutions, which can be dealt with along the same lines [15]. We also assume the
following normal form for the substitution rule:

% :
a → wa ≡ aw′a
b → wb ≡ bw′b

(16)

that is, we assume the first letters ofwa andwb to bea andb, respectively. In principle, this
special form for% is not needed to make our renormalization group (RG) work (see [13,15]),
but it simplifies some of the calculations. Since any two-letter substitution rule may actually
be transformed into normal form without changing the model [13], our assumption does not
lead to loss of generality. For thesilver meansubstitution as defined in (13) the transformation
is simply done by considering the square of the original substitution rule

%SM := %2
sm :

a → wa = abaabaa
b → wb = baa. (17)

The two-letter model contains three independent parameters

r ≡ ln
εxaε

y
a

εxbε
y

b

(18)

and

∆ ≡
(
1a

1b

)
=
(

ln(εxa/ε
y
a )

ln(εxb/ε
y

b )

)
. (19)

Some important statistical properties of the sequence generated by% are already contained in
the corresponding integer substitution matrix

M% :=
(

#a(wa) #a(wb)
#b(wa) #b(wb)

)
(20)

with eigenvaluesλ±. The leading eigenvalue,λ+, gives the asymptotic scaling factor of
the chain length with the number of iterated substitutions, the entries of the corresponding
(statistically normalized) eigenvector,v+, determine the frequenciespa,b of the lettersa, b in
the limit chain [35]. The remaining eigenvalues of the substitution matrix are connected to
fluctuation modes present in the sequence. Especially, the next-to-leading eigenvalue (here
λ−, of course) determines the wandering exponent (defined in (1) above) of the sequence of
couplings [29]

ωε = ln |λ−|
ln λ+

. (21)

Here, any negative value ofωε indicatesboundedfluctuations in the letter frequencies, while
ωε = 0 in general is connected tologarithmic fluctuations [15, 29]. For thesilver mean
substitution as given by (17), we obtain

MSM
% =

(
5 2
2 1

)
λSM
± = (1±

√
2)2 ωSM

ε = −1. (22)
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For the set-up of our renormalization scheme, a classification of the substitution matrices
according to the fixed points of theirreductions modulo 2will be helpful. Although this
classification is mainly for technical reasons, it will become obvious that there are also
differences in the physics of the models connected with the different cases. For two-letter
substitution rules, there are five possible fixed points of [M%]mod2 up to the exchange of the
lettersa andb. They belong to three cases:

(1) Even substitutions. Here the lengths of the wordswa, wb (the column sums of the
substitution matrix) are even at the two possible fixed points:

(a) [M%]mod2=
(

0 0
0 0

)[
=
(

1 1
1 1

)2

=
(

0 1
0 0

)2
]

(23)

(b) [M%]mod2=
(

1 0
1 0

)
. (24)

Even substitution rules will normally lead to an unequal distribution of the letters over the
even and odd positions in the sequence they generate. We thus expect the phase diagram
of the correspondingXY chain to show four phases in the general case, as described
above (11). The exception are substitutions where

pa(#ab − #ba)(wa) + pb(#ab − #ba)(wb) = 0 (25)

leading toδr ≡ 0 and a quantum chain with only two ferromagnetic phases.

(2) Odd substitutions. Here both,wa andwb contain an odd number of letters at the fixed
points:

(a) [M%]mod2=
(

1 1
0 0

)
(26)

(b) [M%]mod2=
(

1 0
0 1

)[
=
(

0 1
1 0

)2

=
(

1 1
1 0

)3

=
(

1 0
1 1

)2
]
. (27)

With the exception of the alternating chain with periodab, which may be generated by even
and odd substitutions, the rules of this class lead to an equal distribution of all coupling
constants over the even and odd bonds in the corresponding quantum chain. The phase
diagram thus only contains theX- andY -ferromagnetic phases. Our example, thesilver
meansubstitution rule, belongs to this class.

(3) Mixed substitutions are neither even nor odd. For the two-letter case, we take|wa| to be
odd, but|wb| to be even

[M%]mod2=
(

1 0
0 0

)
. (28)

In the two-letter case, mixed substitutions behave very much like odd substitutions and
lead to quantum chains without dimer phases.

Please keep in mind that any further discussion may be concentrated on the five fixed
points, since any substitution rule can be transformed into an appropriate one by taking a
suitable power. This clearly does not change the limit chain. In the following, we will derive
relevance criteria for aperiodic disorder generated by the substitution rules of these three cases.
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3. The renormalization group

In this section, we generalize the renormalization procedure introduced for the Ising quantum
chain in [13]. It relies on a decimation process found in [21] for particular substitution rules
and uses a special∗-product technique, originally developed many years ago in the context of
1D scattering theory (see [36] and references therein).

In a first step, we now represent thedecoupledsets of difference equations (4), (5) in terms
of so-calledS transfer matrices. These are defined as(

η2k−1

η2l

)
= Sk|l

(
η2k

η2l−1

) (
η̂2k−1

η̂2l

)
= Ŝk|l

(
η̂2k

η̂2l−1

)
. (29)

Since both systems are simply related under the exchange of the labelsx andy, we may
concentrate on theη equations from now on. Note that theη sub-model contains theεx-
couplings of the even positions, andεy-couplings of the odd positions of the quantum chain.

In comparison with the ordinary transfer matrix, theSk|l appear as scattering matrices with
‘input’- and ‘output’-channels exchanged. This also changes the arithmetics: theS matrices
no longer transform by the matrix product, but by the so-called∗-product such as

Sk|l = Sk|k+1 ∗ Sk+1|k+2 ∗ . . .Sl−1|l ≡
l−k∗
i=1
Sk+i−1|k+i (30)

wherek < l and the∗-product of two matrices is defined as(
a1 b1

c1 d1

)
∗
(
a2 b2

c2 d2

)
=
(
a1 0
0 d2

)
+

1

1− d1a2

(
b1c1a2 b1b2

c1c2 d1b2c2

)
. (31)

The form of the elementary matrices follows from (4) and (5). Forε
y

2k−1 = εyα, εx2k = εxβ and
ε
y

2k+1 = εyγ we obtain (dropping the eigenvalue indexq)

Sk|k+1 ≡ Sαβγ =
(
3/ε

y
α −εxβ/εyα

−εxβ/εyγ 3/ε
y
γ

)
. (32)

The main advantage of this form over the ordinary transfer matrix is that the fermion frequencies
3 and theεx-couplings are separated in the entries of (32). As we will see below, these are
the two quantities to be renormalized here, while theεy couplings have only an indirect effect
on the transformation, but keep their unrenormalized values otherwise.

The basic plan for the RG transformation is to reverse the substitution steps by∗-
multiplication of suitable blocks ofS transfer matrices. In the corresponding problem of
the aperiodic Ising quantum chain with constant transverse fieldh = 1, this is easily done.
There, eachS matrix contains only one coupling constant (εxβ in (32), setting allεy → h = 1).
Since everyS matrix thus corresponds to just one letter, the renormalization steps are simply
performed by∗-multiplication of the sets ofS transfer matrices that correspond to the words
wa orwb in the substitution rule. With anS matrix depending on three consecutive coupling
constants, this is no longer possible for theXY chain. In order to define the renormalization
blocks for a RG transformation taking∗-products along these blocks, we have to modify our
original substitution rule%. What is needed to make the renormalization procedure work, is
a substitution rule onpairs of letters (actually rather than triples). This is because the part of
a single coupling constant in the Ising chain is taken by the ratio of two consecutive coupling
constants in theXY case. Note also that eachεy coupling, according to (32), appears in two
consecutiveS matrices and the corresponding labels overlap. A substitution onn letters thus
(in general) leads to a problem of dimensionn2 in theXY case—if a pair substitution rule can
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be found at all†.
For the moment, let us concentrate on the cases 1 and 2 in the above classification, where

a substitution rule of the desired form is easily constructed. Here,|wα| + |wβ | is even for any
α, β ∈ {a, b} and we obtain a pair substitution

%2 : (αβ)→ wαβ ≡ wαwβ (33)

with substitution matrix

M2 =


#aa(waa) #aa(wab) #aa(wba) #aa(wbb)
#ab(waa) #ab(wab) #ab(wba) #ab(wbb)
#ba(waa) #ba(wab) #ba(wba) #ba(wbb)
#bb(waa) #bb(wab) #bb(wba) #bb(wbb)

 . (34)

Let Vi be the eigenvectors, andλi the eigenvalues ofM2, λ1 being the Perron–Frobenius
one. Again, the entriespαβ , α, β ∈ {a, b} of the corresponding eigenvectorV1 determine (in
statistical normalization) the frequencies of the letter pairs in the limit chain.

Since there are no pairs(bb) in the silver meansubstitution chain, we obtain a three-
dimensional pair substitution rule for this example:

%SM
2 :

(aa) → (ab)(aa)(ba)(aa)(ba)(ab)(aa)

(ab) → (ab)(aa)(ba)(ab)(aa)

(ba) → (ba)(aa)(ba)(ab)(aa)

MSM
2 =

( 3 2 2
2 2 1
2 1 2

)
(35)

with eigenvaluesλ1 = (1 +
√

2)2; λ2 = 1; λ3 = (1−
√

2)2.
We now obtain a one-to-one correspondence between the letter pairs andS matrices if we

adjoin each transfer matrixSαβγ to the pair of letters(αβ) given by its first and second label.
As parameters of the RG, we now definereduced coupling constants

µαβ ≡ ln εxβ − ln εyα (36)

corresponding to the letter pairs. As additional parameters, we also introduce weightsκ±αβ
which enter theS matrices in the following way:

Sαβγ =
(

κ+
αβ3/ε

y
α − expµαβ

−(εyα/εyγ ) expµαβ κ−αβ3/ε
y
γ

)
. (37)

The weight parameters account for the fact that the renormalization blocks, in general, will be
asymmetric (which causesκ+ andκ− to differ), may contain different coupling constants and
also vary in length, which results in different local weightsκαβ andκα′β ′ . The arithmetic mean
of the weights, however, will not be affected by RG transformation and is kept normalized

K+K− = 1 K± = paaκ±aa + pabκ
±
ab + pbaκ

±
ba + pbbκ

±
bb (38)

in accordance with the initial conditionκ±αβ ≡ 1.
The renormalization transformation is now obtained by reversing the substitution

procedure (33)

S̃αβγ ≡
(

κ̃+
αβ3̃/ε

y
α ± expµ̃αβ

±(εyα/εyγ ) expµ̃αβ κ̃−αβ3̃/ε
y
γ

)
(39)

≡
|wαβ |/2∗
i=1
Sw2i−1

αβ w2i
αβw

2i+1
αβ

(40)

† The pair substitution needed here is entirely different from the one used to describe the Ising quantum chain with
coupling constants depending on the two endpoints (site-problem), considered in [35,42]. In the Ising site problem, the
chain is divided into overlapping pairs and each coupling constant appears in two pairs (with each of its neighbours),
but only in one pair here. The present case may lead to a much more pronounced change in the scaling behaviour, see
below.
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wherew
|wαβ |+1
αβ ≡ γ is the last label of the lastS matrix in the∗-product. It does not correspond

to a letter inwαβ , but rather to the first letter (in the first pair) of the wordwα′β ′ that defines the
next renormalization block in the chain. Note that the firstletter of every wordwα′β ′ coincides
with its first label due to thenormal form(16) chosen for our original substitution rule. Thus
we haveγ = α′ here, and the labels of the renormalizedS matrices overlap the same way as the
labels of the unrenormalized matrices did, guaranteeing the consistency of the RG procedure.
In our example (35), the transfer matrix connected to the pair(ab) transforms as (γ ∈ {a, b})

S̃abγ = Saba ∗ Saab ∗ Sbaa ∗ Saba ∗ Saaγ . (41)

Comparing (39) and (37), we see that theεy-couplings just keep their values under the
transformation. Their role in the RG is nevertheless non-trivial, since they affect the
transformation of the weight parametersκαβ and theεx-couplings (resp. the reduced couplings
µαβ).

Now the RG equations for the reduced couplings and weight parameters follow from the
definition of the∗-product (31). For a given substitution rule they are easily derived in explicit
form in the entire parameter space, however, this will not be needed here. The transformation
possesses two attractive fixed points atµ = ±∞, corresponding to different ordered phases
of the quantum chain. The unstable critical fixed points, however, that determine the universal
properties of the model will be found for a vanishing exitation gap at3 ≡ 0. In the reminder of
this section, we therefore concentrate on the RG equations of the reduced coupling constants
at3 ≡ 0, thereby analysing the fixed-point structure and the RG flow near the critical surface.
The linearized RG equations of the weight parameters and fermion frequencies, on the other
hand, will be needed to derive the scaling behaviour of the low-energy spectrum at criticality.
This will be done in the next section.

The renormalization flow for3 ≡ 0 follows from (31). The transformation of the reduced
couplings takes a simple linear form

µ̃ =M t
2µ (42)

where, in the two-letter case,

µ =


µaa
µab
µba
µbb

 = 1

2


21a

1a +1b − r
1a +1b + r

21b

 . (43)

The reduced coupling constants thus transform with thetranspose of the pair substitution
matrix M2. Note that the RG transformations are the same in both decoupled eigenvalue
systems, however, with different initial conditions(1a,b → −1a,b). The renormalization
shows that the reduced couplings indeed play the role of ‘local deviations from criticality’:
for any substitution rule, we find a fixed point of the transformation atµ ≡ 0. This is just the
‘Onsager fixed-point’ of the uniform model. The eigenvalues and eigenvectors ofM t

2 now
directly reveal thescaling fieldsui andRG eigenvaluesyi of the model

ui = µ · Vi yi = ln |λi |
ln λ1

. (44)

In contrast to the renormalization of the Ising quantum chains, the vector of reduced couplings
µ is constrained here to a (2n − 1)-dimensional subspace of the vector space spanned by
the frequencies ofn2 different pairs ofn letters. It may thus occur that certain scaling fields
vanish for arbitrary choice ofµ which indicates that the corresponding fluctuational mode is
not present in the problem. The contribution to the leading scaling field (with corresponding
RG eigenvalue,y1 = 1), however, does not vanish for a genericµ, but

u1 = µ · V1 =
∑
(αβ)

p(αβ)µαβ = [ln εx(even)]av− [ln εy(odd)]av = 0 (45)
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leads to the well known criticality condition for these models (e.g. [34]). Any non-zero
contribution immediately drives the sub-model off the critical surface(µ → ±∞). Note,
however, that the whole model is critical if the criticality condition is fulfilled for just one of
the decoupled subsystems. Exchanging the labelsx andy in (45) and combining the resulting
expressions, we obtain the general criticality condition for theXY quantum chain, given in (11)
above.

The presence of aperiodic disorder in the chain leads to non-zero contributions in the
direction of the additional scaling fields. Letλ2 be the largest eigenvalue with a non-vanishing
scaling fieldu2 for a generical choice of critical couplings. The corresponding RG eigenvalue
y2 is just thewandering exponentωδ of the sequence of reduced couplings, which describes
the fluctuations in the local shifts of the control parameterδ

ωδ = y2 = ln |λ2|
ln λ1

. (46)

The scaling fieldu2 is relevant, whenever|λ2| > 1 andωδ > 0. In this case the system
flows to the correspondingstrong coupling fixed pointof the RG, where the reduced couplings
divide into two types, taking the values±∞, respectively. A (simple) eigenvalue|λ2| = 1
leads to a marginal scaling field and the system flows to a fixed line with continuously varying
exponents. Finally, contributions to scaling fields with|λ2| < 1 vanish as the RG flows to
the Onsager fixed pointµ = 0. Since we haveωc = 0 according to (2), this confirms the
Harris–Luck criterion for these models, if the fluctuations are measured for the sequence of
reduced couplings as described above. The relation ofωδ to the fluctuation exponentωε of the
sequence of coupling constants itself will become clear in the following.

Before we discuss the effects of marginal or relevant aperiodicity to the critical behaviour,
let us take a closer look at the spectra of the pair substitution matrices and the induced RG
flows in the cases 1 and 2 above. It is worthwhile to consider for a moment the situation of
vanishing isotropic aperiodicity. Sincer = 0 leads toδr = 0, the phase diagram of purely
anisotropicXY quantum chains contains only the two ferromagnetic phases. Using

2#aa(wαβ) + #ab(wαβ) + #ba(wαβ) = #a(wα) + #a(wβ) (47)

we recognize that the vector of the anisotropy parameters∆ transforms with the transpose of
the original substitution matrixM%

∆̃ =M t
%∆. (48)

This means, however, that the fixed-point structure and the RG flow near the fixed points is
identical forXY chains with aperiodic anisotropy and the aperiodic Ising spin chain analysed
previously [13]. The criticality condition in this case reduces to

v+ ·∆ = 0. (49)

Of course, (48) implies that the spectrum ofM% is contained in the one ofM2, and in particular
λ1 = λ+. We thus haveωδ > ωε in general, butωδ = ωε in the purely anisotropic case. These
properties generalize literally ton letter substitutions with|wi | all even or all odd. Let us now
see what happens to the RG flow when isotropic aperiodicity is turned on.

• For even substitutions, the entries ofM2 are related as

#αβ(wα′β ′) = #αβ(wα′) + #αβ(wβ ′) α, β, α′, β ′ ∈ {a, b} (50)

and we conclude that the spectrum ofM2 is just the set{λ+, λ−, 0, 0}. The criticality
condition derived from (45) takes the form

v+ ·∆± r

λ+
[pa(#ab − #ba)(wa) + pb(#ab − #ba)(wb)] = 0. (51)
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With the exception of the substitutions fulfilling (25), the condition depends explicitly
on r. This means that the critical manifold splits into two submanifolds for any finite
strength of both, isotropic and anisotropic aperiodicity whereas the phase diagram of the
isotropic chain(∆ = 0) only contains a phase transition between two dimer phases. For
the exceptional cases, of course, the dimer phases are absent and the isotropic chain is
always critical. In order to study therelevanceof the aperiodic modulations, the aperiodic
model should be compared with a simple homogeneous model with the same phase space
topology (the model with anisotropic and alternating couplings for the general case with
four phases). From the spectrum ofM2 we conclude that isotropic aperiodic modulations
do not lead to any further relevant or marginal scaling fields (as compared with the purely
anisotropic case), but mearly renormalize the anisotropy parameters1a,b in the first RG
step. For even substitutions we thus obtainωδ = ωε also in the general case. The
relevance of aperiodic modulations is determined by the second largest eigenvalueλ−
of the substitution matrix and is identical to the case of the Ising quantum chain. This
scenario generalizes without change to then-letter case.

• For odd substitution rules, we establish the following relations:

#ab(waa) = #ba(waa) #ab(wbb) = #ba(wbb) (52)

#ab(wab)− #ba(wab) = #ba(wba)− #ab(wba). (53)

In absence of anisotropythis means thatµ is already an eigenvector ofM t
2 with eigenvalue

λxx = (#ab − #ba)(wab), independent of the detailed form of the substitution rule. Note
thatλxx 6 λ+, andλxx = λ+ only in the degenerate case wherewab = (ab)n and the
substitution generates the alternating chain with periodab. For all other cases, theXX
chain is critical for any amount of aperiodicity induced by odd substitution rules. In the
XY case, we may establishpab = pba by explicit calculation of the Perron–Frobenius
eigenvector ofM2 and conclude that the lettersa, b are indeed equally distributed over the
even and odd positions in the chain. The criticality condition is thus given by (49) also in
the general case and there are no dimer phases in these models. In the RG transformations,
the parametersr and∆ renormalize independently. In other words, isotropic aperiodicity
leaves the anisotropy parameters unrenormalized and does not deform the critical surface,
but introduces an additional scaling field in the RG. Since this may be marginal or relevant,
we find ωδ = ln |λxx |/ ln λ+ for the isotropic chain, but also for the general case, if
|λxx | > |λ−|. For thesilver meanchain in particular, we findωSM

δ = 0 6= ωSM
ε . The

scaling behaviour is thus, in general, independent of the ‘Ising case’. Note that the
remaining eigenvalueλ4 = δw|wa |a ,a

+δ
w
|wb |
b ,b
−1 of any four-dimensional pair substitution,

with eigenvectorV = (1,−1,−1, 1)t , does not affect the RG transformation since
µ · V = 0. Again, these properties generalize ton-letter substitutions with|wi | all
odd. Here, isotropic aperiodicity in general leads to contributions ton − 1 additional
scaling fields.

So far, the third case in the above classification had been set aside. Things are
indeed slightly more complicated for mixed substitutions since we cannot apply our pair
substitution (34) here. Nevertheless, an exact renormalization scheme may be set up also in
this case. The main idea is not to construct a substitution rule for pairs of letters, but for all
substrings of the chain with an even number ofa andb and of minimal length (that is, they
cannot be divided into smaller strings with the same property). Obviously,(aa) and(bb) are
examples for such minimal strings, a general strings with length 2k > 4 begins and ends with
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a pair of lettersab or ba with an arbitrary permutation ofk − 1 pairsaa andbb in between:

s =
({

ab

ba

}{
aa

bb

}k−1{
ab

ba

})
. (54)

For a given substitution rule, the number of different minimal strings is always finite, hence a
substitution rule on a finite ‘alphabet of different strings’si can always be found

%s : si → wsi = %(s1
i )%(s

2
i ) . . . (55)

with substitution matrix

[Ms ]ij = #si (wsj ) (56)

sincewsi may always be dissected into minimal strings. For real space renormalization, in a
first step, we contract the strings by star multiplication of the correspondingS transfer matrices,
this way assigning a single degree of freedom to each string. After that we proceed as usual,
reversing the substitution steps of thestring substitutionby decimation. Scaling fields and RG
eigenvalues are again determined by the action of the transpose of the substitution matrixMs

on a scaling vectorµwith entries corresponding to the different strings, where, from the initial
conditions,

µsi = 1a#a(si) +1b#b(si)− r(#ab − #ba)(si). (57)

A more detailed analysis of the string substitution is given in the appendix, with the following
results. As in the above cases, the anisotropy parameters transform with (48), leading to
the Ising-like renormalization flow. For two-letter substitution rules, the effect of isotropic
aperiodicity is very similar to the one described above for odd substitutions. In particular,
the criticality condition (49) of the purely anisotropic case is not changed for a finiter. This
means that the aperiodicXXmodel is always critical and dimer phases are absent in the general
case. But as for odd substitutions, isotropic aperiodicity introduces a new scaling field in the
model, with eigenvalue of the string substitution matrixλs = 0, if (#ab − #ba)(wb) = 0, and
λs = (2#b0−#b)(wb) otherwise. Here, #b0(wb) gives the number of thoseb inwb which leave
an even number ofa in the string of letters generated by cuttingwb after the letterb under
consideration (#a(w1) even, ifwb = w1bw2). The fluctuation exponent in the general case
readsωδ = max{ωε, ln |λs |/ ln λ+}. Since|wb| is even, so isλs . Isotropic aperiodic modulation
is thus either irrelevant or relevant, but never marginal for mixed two-letter substitutions.

Again, the question arises whether these results generalize to then-letter case. Note that
the method presented here can be applied only to a subclass ofn-letter substitution rules.
However, modifications are possible to treat also the most general case [15]. It turns out
that the transformation of the anisotropy parameters1αβ generalizes just as for even and odd
substitutions. On the other hand, for isotropic aperiodicity, there are two possibilities. If the
substitution leads to quantum chain with only the two ferromagnetic phases (as for two letters)
the consequences will be as described above. But a mixed substitution may also lead to a
quantum chain with dimer phases. In this case, we predict that all RG eigenvalues are given
by the spectrum ofM%, leading toωδ = ωε as for even substitutions.

3.1. Critical scaling of the fermionic spectrum

The determination of the critical scaling behaviour of the lowest fermionic excitations may
now be performed along the same lines as in the case of the aperiodic Ising quantum chain [13].
We will therefore only give a short account here.

We define the following vector form for the weights and fermion frequencies:

Λ± = 3(κ±aa, κ±ab, κ±ba, κ±bb)t (58)
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and consider the RG transformations ofΛ± to linear order in3. For cases 1 and 2, we obtain
from (39) and (31) the linear transformation

Λ̃+ =M+Λ+ Λ̃− =M−Λ− (59)

where

M+
αβ,α′β ′ =

|wαβ |/2∑
k=1

δw2k−1
αβ w2k

αβ ,α
′β ′

 ε
y
α

ε
y

w2k−1
αβ

k−1∏
`=1

exp(µw2`−1
αβ w2`

αβ
)

2

(60)

M−αβ,α′β ′ =
|wαβ |/2∑
k=1

δw2k−1
αβ w2k

αβ ,α
′β ′

(|wαβ |/2∏
`=k+1

exp(µw2`−1
αβ w2`

αβ
)

)2

. (61)

At the Onsager or marginal fixed points, a similarity transformation ofM+ yields the more
symmetric form [13]

M±αβ,α′β ′ = exp(∓2µαβ)
|wαβ |/2∑
k=1

δw2k−1
αβ w2k

αβ ,α
′β ′

k∏
`=1

exp(±2µw2`−1
αβ w2`

αβ
). (62)

In this form, the matrix elements are functions of the reduced couplings only. For thesilver
meansubstitution (35), the matricesM± read

M±
SM =

( 2 + exp(∓r) 1 + exp(∓r) 1 + exp(±r)
2 2 exp(±r)
2 1 1 + exp(±r)

)
. (63)

In this special case, the spectra of both transformation matrices are identical

σ(M±
SM) =

{
1

4

(
ρ ±

√
ρ2 + 4

)2
; 1
}

ρ = exp(r/2) + exp(−r/2). (64)

The transformations for the string substitutions are analogous. The vectors of the weights and
fermion frequencies converge under iteration of (59) to the Perron–Frobenius eigenvectors
of M±. Using the normalization condition (38) for the weights, we now obtain the scaling
behaviour of the lowest fermionic excitations. Note that the RG transformation may either by
interpreted as a mapping of the low-energy spectrum of the infinite chain onto itself, or as a
mapping of criticalfinite-sizespectra from a system of lengthN to a system of lengthN/λ+.
Formally, we obtain the scaling of the exitation gap for a small distance from criticality

3 ∼ δz δ→ 0 (65)

and the finite-size scaling form of the low-energy spectrum

3q ∼
( q
N

)z′ q

N
� 1 (66)

with the scaling exponent

z = z′ = ln(λM+λM−)
2 lnλ+

. (67)

Here,λM± are the largest eigenvalues ofM±.
For irrelevant aperiodic modulations, we obtain

M+ =M− =M t
2 (68)

λM+ = λM− = λ+ (69)

and hencez = z′ = 1. From thefinite-size scaling ansatz, we should havez′ = z/ν. Thus also
the Onsager valueν = 1 for the correlation length exponent follows. Since the fixed-point
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values of weights and couplings are independent ofr and∆ and thus the same as for the
uniform chain we may also conclude that the low-energy excitations are equally spaced, in
accordance with the predictions ofconformal invariance. For the related problem of the Ising
quantum chain, this has been observed numerically previously (e.g. [8]).

Near the marginal fixed points, the coupling constants and thus the eigenvaluesλM± take
non-trivial values. This leads to a scaling exponent 1< z <∞ which depends continuously
on the coupling constants. Fromfinite-size scaling, we concludeν = 1 as in the irrelevant case
above. The analytic form of the scaling exponentzmay be found for each substitution rule by
explicit diagonalization of the four-dimensional matricesM±, see the examples below. For
even substitutions, and in general for the purely anisotropic case, the RG equations may exactly
be reduced to the corresponding ones of the Ising quantum chain in a transverse magnetic
field. Since the scaling exponentz has been calculated there explicitly for arbitrary two-letter
substitutions [13], the marginal exponent for theXY chain may also be found through this
correspondence. Indeed, numerical observations indicate that not only the scaling exponents,
but the entire low-energy spectra (but not the high-energy parts) of the two quantum chains are
identical up to a common factor (altered fermion velocity). Note that the spectra are, of course,
not conformally invariant for marginal fluctuations. For odd substitution rules, isotropic and
anisotropic aperiodic modulation may be independently marginal. Generically, this leads to a
scaling exponent depending on as many parameters as marginal scaling fields are present in
the problem.

For relevant aperiodic modulations, the reduced coupling constants do not tend to a finite
limit, but (generically) grow with the second largest eigenvalueλ2 ofM2. As a consequence,
λM± finally scales asλM± ∼ exp(cλn2) in thenth renormalization step, resulting in a scaling
behaviour of the lowest gaps as

3q ∼ exp(−c(N/q)ωδ ) (70)

with ωδ defined in (46). Again, the same scaling behaviour, with the wandering exponentωε
of the sequence of couplings directly, had been found for the Ising quantum chains [29]. (See
also [13] for a more detailed discussion in the Ising case.) Note that, in contrast torandom
disorder, for aperiodic sequences in generalωε 6= ωδ. The RG flow to strong couplings may
lead to rather unusual critical properties, where typical and mean values of various exponents
(e.g. the correlation length exponent of the spin chain) no longer coincide [5,22], see also the
discussion below. The scaling form (70) of the fermionic low-energy spectrum is, however,
not affected by ‘untypical events’ of this type.

3.2. Critical scaling of fermionic eigenvectors

A RG transformation may also be set up for the entries of the fermionic eigenvectors, which
appear in the fermionic expressions for the spin correlation functions [27]. Again, we may
closely follow the analogue formulation for the Ising quantum chains, recently given in [14].

In a first step, we assign double labels to the vector entries according to the coupling
pairs. This may be done in different ways, here we setηk+1 ≡ ηk+1,αβ andηk+2 ≡ ηk+2,αβ for
ε
y

k = εyα andεxk+1 = εxβ . Renormalization on the vector components acts as pure decimation;
the decimated entries of the original vector are related to the renormalized ones through the
S transfer matrices. At criticality(3 = 0), the even and odd entries of the low-energy
eigenvectors decouple and we obtain

C+η2k+2i−2,w2i−1
αβ w2i

αβ
= ± ε

y
α

ε
y

w2i−1
αβ

i−1∏
`=1

exp(µw2`−1
αβ w2`

αβ
) · C̃+η̃2k′,αβ (71)
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C−η2k+2i−1,w2i−1
αβ w2i

αβ
= ±

|wαβ |/2∏
`=i+1

exp(µw2`−1
αβ w2`

αβ
) · C̃−η̃2k′+1,αβ (72)

whereC± are normalization factors for the even and odd components separately. In contrast to
the coupling constants, the vector entries depend not only on the aperiodic labelαβ, but also
explicitly on the positionk. Performing partial sums of the squared vector entries according
to their aperiodic label,

η
(+)
αβ =

∑
k

η2
2k,αβ η

(−)
αβ =

∑
k

η2
2k+1,αβ (73)

the RG transformation for the normalization factors may, however, be recast into a simple
matrix form

C2
±η

(±) =M±C̃2
±η̃

(±)
. (74)

Here,M± are in fact just the transformation matrices of the weighted fermion frequencies
above (60), (61), and thus

C±/C̃± =
√
λM± (75)

in the RG limit. The same result is obtained for the vectorsη̂ of the other sub-model, with
λ̂M±(r,1) = λM±(r,−1).

4. Thermodynamic properties

In this section the consequences of the scaling behaviour of the fermionic spectrum to the
thermodynamics of the spin chain are discussed.

TheX andY surface magnetizationmx,y± on the left(−) and right(+) surfaces is the
quantity expressed most easily in the fermionic representation (for simplicity we takeN even).
Analogous to the Ising quantum chain [23,33], it may be obtained from the large-τ limit of the
imaginary time spin–spin correlation function at the surface. For free boundary conditions,
this leads to an off-diagonal matrix element of the ground state with the first excited states
|1〉, |1̂〉 of the two decoupled submodels. These states become asymptotically degenerate with
the ground state in the ordered phases [27]. Note that the ground state matrix element itself
is always zero due to spin inversion symmetry. Upon expressing the boundary spins in terms
of the fermions, we find the following expressions for magnetization of the left surface in the
ferromagnetic phases:

mx− = 〈1|σx1 |0〉 = η(1)1 m
y
− = 〈1̂|σy1 |0〉 = η̂(1)1 (76)

and similarly for the right surface. For the marginal (or irrelevant) two-letter substitutions,
we thus obtain the finite-size scaling exponent of the surface magnetization directly from the
scaling of the eigenvector normalization constants considered above. For phase transitions
with δr > 0 we obtain

m
x,y
± ∼ N−β

x,y
± /ν βx± =

ln λM±
2 lnλ+

β
y
± =

ln λ̂M±
2 lnλ+

(77)

sinceν = 1 for irrelevant or marginal fluctuations (see above). For transitions to the dimer
phase atδr < 0, the x and y labels should formally be exchanged [15]. The surface
magnetization exponents are related as

βx+(r,1) = βx−(−r,−1) = βy−(−r,1) = βy+(r,−1). (78)

We also findz = βx+ +βx− andẑ = βy+ +βy−. In a similar way, the scaling exponent of the surface
component of the so-calledstring-ordering parameterthat characterizes the topological order
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in the dimer phases may also be obtained [15]. In the irrelevant case, (77) givesβ
x,y
± = 1

2,
as it should be. For marginal aperiodicity, on the other hand, the local scaling exponents of
the surface magnetization do not only depend on the strength of the aperiodicity (as doesz),
but also explicitly on the surface of the chain: the above expressions give the exponents for
a right or left surface that is itself generated by iterated substitution on an arbitrary seed (or
a cut through the limit chain at a finite distance to these ‘natural’ surfaces). Scaling relations
like (78), in general, hold only for surfaces generated that way. We give an example below
for a scaling exponentβx− depending on the type of the surface. The gap scaling, on the other
hand, is a global property and does not depend on surfaces or any other local properties of the
chain.

We now proceed to the determination of the critical exponents of susceptibility and specific
heat. This may be done in analogy to the analysis of the Fibonacci–XX chain in [28]. Note
first that the critical scaling of the low-energy spectrum directly implies the scaling form of
the integrated density of states in the thermodynamic limit as [13,28]

H(3) ∼ 31/zg(ln3/ ln λ+) 3→ 0 (79)

(g is a function with unit period) for marginal or irrelevant aperiodicity and

H(3) ∼ (ln |3|)−1/ωδ 3→ 0 (80)

in the relevant case. The free energy (per spin) of theXY chain at finite temperature 1/β is
given by an integral transform of the fermionic IDOS as [27,28]

βf = − 1

N

∑
q

ln(1 + exp[β3q ]) (81)

= −
∫

dH(3) ln(1 + exp[β3]). (82)

Now, the specific heat is given by

Cv = β2 ∂
2

∂β2
[−βf ] = β2

4

∫
dH(3)

32

cosh2(β3/2)
. (83)

At low temperature, this expression is dominated by the small3 region and theT → 0 scaling
behaviour ofCv is completely determined through the critical scaling of the fermionic spectrum

Cv ∼ T 1/zG(ln T/ ln λ+) Cv ∼ 1/(ln T )1+1/ωδ (84)

for marginal (irrelevant) and relevant aperiodicity, respectively, andG is again a periodic
function with unit period. Similarly, the susceptibility at vanishing field inz direction may be
derived to leading order as (with3(h) = 3(h = 0) + h · r(3), r bounded)

χz = −∂
2f (h)

∂h2

∣∣∣∣
h=0

∼ β

4

∫
dH(3)

cosh2(β3/2)
(85)

and

χz ∼ T 1/z−1G′(ln T/ ln λ+) resp. χz ∼ 1/(T [ln T ]1/ωδ ). (86)

Thus the susceptibility diverges for any marginal or relevant aperiodic perturbation. Note that
for ωδ = 1

2, which is the mean fluctuation exponent for uncorrelated random disorder, these
expressions coincide with the scaling behaviour of the random chain [5].

As stated above, the aperiodicXY spin chain is essentially equivalent to two decoupled
tight-binding models with aperiodic hopping (8). In this context, the scaling exponentz

calculated above determines thelocalization lengthat half-filling. It is well known that the
one-dimensional tight-binding model with random hopping exhibits a single delocalized state
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at the band centre. This is also the case for any kind of aperiodic disorder (also due to random
substitutions, see below) fulfilling the criticality condition. Using the Thouless relation [40]
we obtain from (79), (80) a diverging localization length`3 at3 = 0, such as

`3 ∼ 3−1/z 3→ 0 (87)

`3 ∼ | ln3|−1+1/ωδ 3→ 0 (88)

for marginal (or irrelevant) and relevant perturbations, respectively. A more detailed analysis
of the resulting state (extended or critical) is possible for particular examples with the methods
of [25].

5. Examples

• The Thue–Morse chain, generated by

%TM :
a → ab

b → ba
(89)

is an even substitution of the exceptional type fulfilling (25). The model is critical
whenever1a = −1b and does not possess any dimer phases. The induced disorder
is irrelevant, sinceλ− = 0.
• The period doubling chain, generated by

%pd :
a → ab

b → aa
(90)

is an example for an even substitution rule with|λ−| = 1. The criticality condition reduces
to 21a +1b ± r = 0; note in particular that thepd XX chain is not critical. The critical
scaling exponent is well known from the Ising case [21]

zpd = ln(2 cosh(1a/2))

ln 2
(91)

and is also for theXY chain a function of only one variable.
• The so-calledprecious mean(or metallic mean) chains [2,17] are generated by substitution

rules with a substitution matrix of the form

Mk =
(
k 1
1 0

)
(92)

with eigenvaluesλk± = (k ±
√
k2 + 4)/2. According to the above classification,

they all belong to case 2 and are critical forλk+1a = −1b. While criticality only
depends on the anisotropy parameters, the critical exponent depends solely onr. Since
|λk−| < 1, anisotropic precious mean modulations are irrelevant. On the other hand,
it is straightforward to check that|λxx | = 1, thus the isotropic aperiodicity is always
marginal. For evenk (k = 2 corresponds to thesilver meanchain), we eliminate blocks
corresponding to double substitution steps in the RG transformation and obtain the scaling
exponent

zk = ln2k

ln λk+
2k = 1

4

(
kρ +

√
k2ρ2 + 16

)
(93)

where

ρ = exp(r/2) + exp(−r/2). (94)
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For k odd,k = 2`− 1, in each RG step three substitution steps have to be reversed. We
(finally) obtain the scaling exponent

z̃k = ln2`

3 lnλk+
2` = 1

2

(
P`(r)ρ

2 +
√
P 2
` (r)ρ

4 + 4

)
(95)

where

P`(r) = `2 sinh[̀ r] + (`− 1)2 sinh[(`− 1)r]

sinh[r]
(96)

and ρ as defined above. The first term of this series, withk = ` = P1(r) ≡ 1,
corresponding to the Fibonacci chain, had already been obtained in [28] using the well
known properties of the Fibonacci trace map [24]. Also for generalprecious mean
chains, spectral scaling exponents may be calculated by trace maps due to the existence of
invariants [2]. This has been done in [18]. Note, however, that the scaling exponents found
in [18] (given in terms of Chebyshev polynomials) do not simply translate to the above
expressions since the transfer matrices of the aperiodic hopping problem do not have unit
determinant. In contrast to the aperiodic potential problem [18], the scaling exponents here
behave differently fork even or odd in the limit of weak incommensurabilityk→∞. For
fixed ratio of the couplingsr, aperiodicity becomes irrelevant fork even(limk→∞ zk = 1),
but not fork odd(z̃k →∞).
Theprecious meanchains are just those quasicrystalline chains that result from the so-
called cut-and-project formalism with the slope of the cut space given byλk+ = [0, k̄].
By successive application of different precious mean substitutions, a much more general
class of cut-and-project chains may be generated. Indeed, since the eigenvectorvxx to the
marginal eigenvalueλxx of M2 is independent ofk, the marginal scaling property also
holds for this more general class of chains. Quadratic irrationalities in particular, which
are observed in real quasicrystalline matter, are given by periodic continuous fractions and
lead to cut-and-project chains that may be generated by a periodic application of precious
mean substitutions. Thus the scaling exponentz can also be calculated using the above
method.
Finally, we wish to stress that the origins of the marginal scaling behaviour observed for
the interface roughness of Fibonacci surfaces [10, 12] and theXY quantum chains on
the other hand are independent. According to the Harris–Luck criterion, the former is
connected to the fact that the unperturbed correlation length exponent which enters (2) is
ν = 1

2 there and theprecious meansubstitutions, being volume preserving, lead to the
marginal wandering exponentωε = −1 [19]. Substitution rules that lead to marginal
scaling in only one of these situations are easily constructed; it is rather special that the
precious meanchains fulfil both marginality conditions.
• Different types of the three-folding chain are defined by substitution rules with substitution

matrix

M3f =
(

2 1
1 2

)
. (97)

This is one of the simplest examples of a chain where both isotropical and anisotropical
aperiodicity are independently marginal (with exception of the special form% : a →
aba; b→ bab which leads to a periodic chain andz = 1). At criticality (1a = −1b ≡
1), the continuously varying scaling exponents thus depend on two variables(ρ,1).
Consider first two types of the substitution rule that lead tolocally isomorphic(or patch
equivalent) chains, but generate different types of surfaces:

%3f1 :
a → aba

b → bba
%3f2 :

a → aab

b → abb
. (98)
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We find the following exponents for the surface magnetization:

1. βx− =
log[1 + exp(r) + exp(1 + r/2)]

2 log 3
(99)

2. βx− =
log[1 + 2 exp(−1) cosh(r/2)]

2 log 3
. (100)

The gap exponent, on the other hand, is the same for all locally isomorphic chains. We
obtain in any case (withρ defined in 94)

z3f = ln(ρ2 + 2ρ cosh[1] + 1)

2 ln 3
. (101)

The substitution rule

%̃3f :
a → aab

b → bba
(102)

however, generates a chain of a different local isomorphism class, and we obtain the
exponents

z̃3f = 2βx,y± =
ln23f

ln 3
(103)

where

23f = ρ cosh(1) +
√

[2 sinh(r/2) sinh(1)]2 + 1. (104)

For r = 0, these expressions reduce to the corresponding ones of the Ising quantum
chain [21]. Note also thatz3f = z̃3f for pure isotropic aperiodicity.
• The substitution rule

% :
a → abb

b → ababbb
(105)

belongs to case 3 in the classification above. A set of four strings,

{(bb), (abab), (abba), (babbba)} (106)

is sufficient to define a string substitution with substitution matrix

Ms =


2 2 1 2
2 1 0 1
0 1 1 1
0 1 2 3

 . (107)

We haveλ− = 0, hence aperiodic anisotropy is irrelevant, but sinceλs = 2 and
ωδ = ln 2/ ln 5> 0, isotropic aperiodicity will be relevant.

6. Extensions to correlated random disorder

Aperiodic order, as generated by substitution rules, represents a natural, but non-trivial
extension of crystalline and quasicrystalline order. Structures with this type of long-range
order are certainly physically reasonable (perhaps in contrast to hierarchical systems) but of
course also show a number of quite special properties in comparison with random systems.
These include rescaling symmetries and thestrong repetitivityof local patches due to their
self-similar structure. Moreover, the ordering is deterministic by construction and leads to
zero entropy density. However, as has been argued in [29,30], the thermodynamic properties
of (quantum) spin models should be unaffected by most of these special properties, but depend
only on the nature of the fluctuations present in the system. In fact, also our RG formalism
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may be applied to a more general class of models and, in particular, doesnot depend on the
exact self-similarity of the substitution chains. Let us explain this in more detail.

For simplicity, we concentrate on aperiodic anisotropy (respectively, the Ising case). Fix a
substitution% : ai → wi , but consider the chain of couplings chosen according to the following
random substitution rule

% : ai → perm(wi) (108)

where perm(wi) denotes a random permutation of the letters inwi . The class of chains
generated this way is clearly neither deterministic nor strongly repetitive, in fact it is, almost
surely, not repetitive at all. What is more, its entropy density is positive. Indeed, the nature of
the fermionic spectrum is completely changed by the introduction of randomness: whereas it is
typically purelysingular continuouswith a characteristic gap-structure for substitution chains,
all these gaps vanish in (numerical) spectra of random substitutions. The only property that
remains unchanged, is the total fluctuation of the mean (reduced) coupling. It still decomposes
into a superposition of a finite number of fluctuation modes, implicitly given through the
eigenvalues of the substitution matrix. This property is also the essential ingredient for our RG
procedure, which depends on the substitution matrix rather than on the detailed form of the
substitution itself. Consequently, neither the RG flow nor the fixed-point structure are affected
by introducing randomness into the substitution rules. Note, however, that the scaling exponent
z in the marginal case depends on% in more detail and we only obtain analytical upper and
lower bounds(1 < z1 6 z 6 z2 <∞) for random substitutions here [15]. Numerical results
indicate thatz may indeed vary within this interval and does not converge to a well defined
limit.

In many respects, random substitution chains with relevant fluctuation modes (in particular,
those with wandering exponentωδ = 1

2) behave very similar to uncorrelated random chains.
However, a characteristic difference is that for the latter only the asymptotic growth of the
meanfluctuations is controlled by the mean deviation exponentω = 1

2, while fluctuations of
any order (up toω = 1) may be present with a non-vanishing probability on every length
scale. The most significant consequence is the off-critical Griffiths phase observed in random
quantum chains [5,7], but not in aperiodic models [22]. Also, for random substitution chains
with exponentially many realizations, no Griffiths phase should be present since for any non-
critical values of the coupling constants there is afinite maximal size for ‘locally critical’
patches.

7. Discussion

We extended an exact real space renormalization approach, originally formulated for Ising
quantum chains, to aperiodicXY quantum chains. This way, relevance criteria for aperiodic
modulations have been obtained analytically for a second class of models. As predicted by the
Harris–Luck relevance criterion, the geometrical fluctuation exponent plays the key role in the
determination of the critical behaviour. However, the fluctuation exponentωδ of the sequence
of ratios of consecutingεx andεy couplings, which matters for theXY models, may differ
from the wandering exponentωε of the sequence of interactions itself, which had been the
crucial quantity in the Ising case. As a consequence, the relevance of aperiodic orderings that
do not lead to a dimerization in the coupling constants(δr ≡ 0), in general, will be different
for Ising quantum chains andXY models. In particular, quasiperiodic (dis)order, generated
by substitution rules compatible with the cut-and-project formalism, is irrelevant for Ising
quantum chains and most other Ising spin systems, but marginal forXX or XY chains. On
the other hand, aperiodic rules that lead toXY chains with dimer phases, induce fluctuations
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of the same strength(ωδ = ωε) and lead to the same critical behaviour as in the Ising case.
The analysis of the RG fixed-point structure and renormalization flows in particular

indicates that there is no discrimination between weak and strong aperiodic disorder in these
models. The validity of the perturbative Harris–Luck criterion is thus extended to the case of
strong modulations. Open questions remain mainly for relevant aperiodic disorder. Here, the
RG flows to the strong coupling limit and the critical scaling behaviour of several ensemble
averaged quantities is dominated by rare events. A comparison of the resulting ‘aperiodic
ground states’ to the so-called ‘random singlet phase’ postulated for uncorrelated random
chains [5] would be of interest. For the Ising quantum chains, a first step into that direction has
been taken in [22]. We have shown that the RG approach may also be applied to random
substitutions and does not rely too much on special properties of deterministic aperiodic
systems. Let us remark that—especially in the Ising case—the structure of the RG is rather
simple and an extension to ensembles of uncorrelated random chains should be possible. The
crucial question is whether the atypical means of quantities such as the critical correlation
function will be accessible within a RG scheme which works in the fermionic representation.

The renormalization approach leads to an exact determination of the scaling exponents
β
x,y
± of the surface magnetization andz of the mass gap for arbitrary two-letter substitution

rules. An extension to generaln-letter substitutions is possible [15]. The critical exponents
connected with the scaling of the spectrum at3 = 0 may be calculated exactly, such as the zero
temperature specific heat, the susceptibility in a vanishing magnetic field in thez direction, or
the localization length of the aperiodic hopping model at half-filling. We have given a number
of quantitative results as examples, mainly for marginal aperiodicity.

The exact results obtained for the aperiodicXY models should be of use for the analysis
(perturbational or numerical) of more complicated aperiodic models, such asXYZ spin chains.
A first result for the Heisenberg chain has been obtained very recently in [16]. As for analytical
results, a natural step would be to introduce a non-vanishing transverse magnetic field inz

direction. However, although this still leads to a free fermion model, a treatment by exact
renormalization as shown here at zero field does not seem to be a simple problem.
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Appendix. Spectra of string substitutions

We are interested in the action of the transpose string substitution matrixM t
s on the vectorµ

with

µsi = 1a#a(si) +1b#b(si)− r(#ab − #ba)(si). (A.1)

For µ̃ ≡M t
sµ we find

µ̃si = 1a#a(wsi ) +1b#b(wsi )− r(#ab − #ba)(wsi ). (A.2)

Using

#a(wsi ) = #a(wa)#a(si) + #a(wb)#b(si) (A.3)

#b(wsi ) = #b(wa)#a(si) + #b(wb)#b(si) (A.4)
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we obtain the transformation rule (48) of the anisotropy parameters.
On the other hand, since|wa| is odd and|wb| even, we may write

(#ab − #ba)(wsi ) = (#ab − #ba)(wb) · (2#b0 − #b)(si) (A.5)

where #b0(si) gives the number ofb in si = si1bsi2 with #a(si1) even. Thus isotropic
aperiodicity is clearly irrelevant if(#ab − #ba)(wb) = 0. Otherwise, consider now the action
ofM t

s on µ̃. For∆ = 0 we obtain

[M t
s µ̃]si = −r(#ab − #ba)(wb) · (2#b0 − #b)(wsi ) (A.6)

= −r(#ab − #ba)(wb) · (2#b0 − #b)(wb) · (2#b0 − #b)(si) (A.7)

and recognizeλs ≡ (2#b0 − #b)(wb) as the desired RG eigenvalue.
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[22] Iglói F, Karevski D and Rieger H 1998 Random and aperiodic quantum spin chains: a comparative studyEur.

Phys. J.B 1 513–7
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